Robust multi-atlas label propagation by deep sparse representation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust multi-atlas label propagation by deep sparse representation

Recently, multi-atlas patch-based label fusion has achieved many successes in medical imaging area. The basic assumption in the current state-of-the-art approaches is that the image patch at the target image point can be represented by a patch dictionary consisting of atlas patches from registered atlas images. Therefore, the label at the target image point can be determined by fusing labels of...

متن کامل

Atlas Forests Multi-Atlas Label Propagation with Atlas Encoding by Randomized Forests

We describe our submission to the MICCAI 2013 SATA Challenge. The method is based on multi-atlas based label propagation, its major characteristic being that is uses the concept of an atlas forest to represent an atlas. This results in an efficient scheme, which requires only a single registration to label a target. Fusion of the probabilistic label proposals from each atlas is done by averagin...

متن کامل

Sparse Patch-Based Label Fusion for Multi-Atlas Segmentation

Patch-based label fusion methods have shown great potential in multi-atlas segmentation. It is crucial for patch-based labeling methods to determine appropriate graphs and corresponding weights to better link patches in the input image with those in atlas images. Currently, two independent steps are performed, i.e., first constructing graphs based on the fixed image neighborhood and then comput...

متن کامل

Representation Learning for Sparse, High Dimensional Multi-label Classification

In this article we describe the approach we applied for the JRS 2012 Data Mining Competition. The task of the competition was the multi-labelled classification of biomedical documents. Our method is motivated by recent work in the machine learning and computer vision communities that highlights the usefulness of feature learning for classification tasks. Our approach uses orthogonal matching pe...

متن کامل

Classifier-Based Multi-atlas Label Propagation with Test-Specific Atlas Weighting for Correspondence-Free Scenarios

We propose a segmentation method which transfers the advantages of multi-atlas label propagation (MALP) to correspondence-free scenarios. MALP is a branch of segmentation approaches with attractive properties, which is currently applicable only in correspondence-based regimes such as brain labeling, which assume correspondence between atlases and test image. This precludes its use for the large...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition

سال: 2017

ISSN: 0031-3203

DOI: 10.1016/j.patcog.2016.09.028